
Introduction to the GenICam Standard

Dr. Fritz Dierks
Chief Engineer & Head of SW Development

Basler AG

Chairman of the GenICam standard committee

Why GenICam?

provides plug&play to machine vision cameras

Customers

HSLink

Driver Vision Library

Camera

Vendors

PC Software

Vendors

Feature Access

GenICam Members
(2006) : 9 � 20 � 47 � 60 �77 : (Jan 2010)

Core Team

Investments in GenICam

Committee Work
– 7 years of intense work
– 17 international meetings
– ~15 companies per meeting*)

Common Code Base
– Used by nearly all companies

but not part of the standard
– Written in C++
– Supports Win32 / Win64 with

Visual Studio 7.1 / 8.0 / 9.0
– Supports Linux32 / Linux64

with gcc>=4.0, glibc>=2.3.5
– Strict focus on quality

*) since 2005

Investments**)

– Meetings >300 k€

– Common code base >500 k€

**) rough estimate; does not include product development

Interfaces Supporting GenICam

Cost for adding GenICam support*)

– Introducing GenICam for the first interface : ~50 k€

– adding another interface to existing GenICam support : ~ 10 k€

����

?

2.0

����

����
(�)

����
HSLink

�

*) very(!) rough estimate

+

?

Some Questions

• What makes GenICam attractive?
– Serves a market need

– Has hit a window of opportunity

– Has mechanisms to evolve quickly

• Which Modules does GenICam Consist of?
– Camera Configuration (modules GenApi & SFNC)

– Image Acquisition (module GenTL)

• What is the Status and Roadmap for GenICam?

� Let‘s have a look at the details

History of Camera Configuration

Standard = video signal + DIP switches
� plug&play, but limited video formats only

Sensor ADC + Grabber Driver VisionLib App

Standard = serial port, no defined protocol
���� no plug&play

Sensor Grabber Driver VisionLibADC App

Standard = fixed register layout
���� plug&play

Sensor Driver VisionLibADC AppNIC

Problems with Fixed Register Layouts (1/2)

No Business Model for Custom Feature Support

– Custom features require expensive manual coding in the driver

– It hardly makes sense for a driver vendor to support camera custom features. Example:

Camera vendor : 400 cam/yr * 1000 €/cam = 400 k€/yr � sweet deal ☺☺☺☺

Driver vendor : 400 license/yr * 100 €/cam = 40 k€/yr � sour deal ����

Workaround: Cameras Come with their Own (Free) Driver

– Only for network based cameras

– Proprietary solution, no integration into vision library

– Free drivers puts a lot of pressure on driver/VisionLib business model

Camera NIC App VisionLibDriver

Camera AppVisionLibDriverNIC

���� Missing Custom Feature Support

Problems of Fixed Register Layouts (2/2)

Fixed Register Layout Contains Lots of Implementation Details
(bit depth, feature inquiry, min/max/inc,)

���� Slow Standard Evolution

– Exhaustive discussion about bits & bytes

– Each company is fighting for their specific layout

– Only really large companies can start a standard layout (1394 IIDC = Sony)

���� No Migration Path from Custom to Standard Features

– New features are implemented as custom features for sake of speed

– If feature is later standardized and gets a different register layout
� no adoption possible because of backward compatibility

– Proposing standard features makes not too much sense for a company

���� Standard Defines Too Many Details

The Window of Opportunity

GigE Vision Standard

− Kick-off meeting June 2003

− Every company tried to get their
proprietary register layout standardized

− After one year no conclusion was
reached

���� committee was stuck ����

Escape Route

− Let every camera have their own
register layout

− Define standard features abstractly

− Have a camera description file in
XML format with describes how to map
the abstract features to the registers

���� Birth of GenICam

Standardized interface IPort
- ReadRegister(…)
- WriteRegister(…)

HSLink

Camera Driver VisionLib AppXML

GenICam Modules GenApi and SFNC

GenApi Module

• Defines the XML language of the
camera description file

• Supported types: Integer, Float,
Enumeration, Bool, String

• Each type corresponds to an interface
with methods like GetValue, SetValue,
GetMin, GetMax, etc.

• Camera has a set of features

• Each feature has a name, a type and a
meaning � abstract

• Description syntax is the same for
custom and standard features

Example
• Name = „Gain“

• Type = IInteger

• Meaning = camera amplification

SFNC*) Module

• Defines a set of abstract features
forming the ideal camera

• No details, just the name, type
and meaning

• List has grown to >400 features

� committee was un-stuck ☺

*) SFNC = Standard Feature Naming Convention
���� Full Custom Feature Support

How Things Worked Out

Original Assumption

• Customers use the native GenICam

API

• XML file contains a ~1:1 mapping of

registers to features

What Happened in Reality

• Library vendors used GenICam as

engine under the hood

• Customers got the functionality of

GenICam but through the libraries’

native API

• XML file is used to map legacy

registers to SFNC features

small

XML

complex
XML

VisionLib

native GenICam API

proprietary*) API

*) some use GenICam natively; many have a back-door

How GenICam can Evolve Very Fast

Voting Rules

– Membership to GenICam committee is free

– 1..2 meetings per year; homework between meetings

– Only companies contributing homework can vote*)

� Who invests money gets in the driver seat

Migration Path from Custom to Standard Features

– New features are implemented by some company as custom feature
� immediate business

– The feature can be added to SFNC list later � adds proven features

– Custom features become standard by changing an attribute in XML file

*) GigE Vision and CameraLink borrowed these rules recently

GenTL Module – The Grab Interface

Modules:

– GenApi/SFNC : camera configuration

– GenTL : enumerating devices, retrieving XML file, grabbing images

Why GenTL?

– Typically camera vendors have drivers for their own products

– Integrating a driver into an image processing library requires quite some effort

– With GenTL comes plug&play: just install the driver and the library can use it

Camera Driver VisionLib AppXML

Set of standard interfaces
- C headers
- helper classes

The GenTL Business Case

Why is there so little GenTL Support?

– Splits responsibility on the PC side (support)

– Operating system support depends on camera vendor

– Once most library vendors have their own driver there is not much GenTL demand any more

– GenTL missed the first window of opportunity (by Nov 2008 everybody had a driver)

Now there is a New Window of Opportunity!

– Lots of new interfaces are evolving (CoaXPress, CameraLink HS, USB 2.0/3.0, LightPeak, …)

– It is too expensive for everyone to develop their own drivers / frame grabbers

– Solution: Make basic GenTL support mandatory to the transport layer standards

– Benefit: Immediate access to image processing libraries even if the user base is still small

– Good news: there is growing activity!

Camera NIC AppVisionLibDriver

PC

���� Overcome the Chicken & Egg problem

Status and Roadmap

GenICam v2.0
– Released November ‘09

– Maintenance release v2.0.1 February ‘10

– Contains GenApi v2.0, SFNC v1.3, GenTL v1.1

GenICam v2.1 Release Candidate
– GenApi � maintenance

– CLProcotol v1.0 � CameraLink support

– SFNC v1.4 � Updated

– GenTL v1.2 � Updated

What comes next?
– Improving documentation (extending tutorial)

– Supporting more compilers (VS100)

– Supporting more platforms

– Improving support for frame grabber based
system � any feedback welcome ☺

New

Dr. Fritz Dierks
Chief Engineer
& Head of SW Development

Basler AG

An der Strusbek 60-62
22926 Ahrensburg
Germany

Phone: +49-4102-463-381
Email: friedrich.dierks@baslerweb.com

www.baslerweb.com

GenApi – Getting Started

Dr. Friedrich Dierks, Basler AG

Chair of the GenICam Standard Group

Chief Engineer and Head of Software Development at Basler AG, Germany

Version 1.0

2

Content

� Basics

� Hello World

� Connecting a Camera

� XML Schema

� Mapping Gain Register Block

� Dealing with Min / Max

� Logging

� Inquiry Flags

� Enumerations

� Commands

� Advanced Topics

� XML Formulas

� Feature Tree

� Callbacks

� Supported Types & Nodes

� Conclusion & Outlook

3

Hello World (1/3)

� Example for Windows and VisualStudio (VC71, VC80, VC90; VC100 coming)

� Get the reference implementation from www.genicam.org

� Run the installer

� Copies code � c:\program files\GenICam_v2_1

� Sets environment variables, e.g. GENICAM_ROOT_V2_1

� Start VisualStudio and create a Win32 Console Application HelloWorld

� In the HelloWorld project‘s settings...

� …add $(GENICAM_ROOT_V2_1)/library/CPP/Include
as additional include directory

� …add $(GENICAM_ROOT_V2_1)/library/CPP/Lib/Win32_i86
as additional library directory

� Add #include „GenApi/GenApi.h“ to HelloWorld.cpp

����Now you’re ready to use GenICam

4

<?xml version="1.0" encoding="utf-8"?>

<RegisterDescription

 ModelName="MyVendor"

 VendorName="MyCamera"

 ToolTip="A very fast and powerful GigE area scan camera"

 StandardNameSpace="GEV"

 SchemaMajorVersion="1"

 SchemaMinorVersion="1"

 SchemaSubMinorVersion="0"

 MajorVersion="1"

 MinorVersion="0"

 SubMinorVersion="0"

 ProductGuid="2D932CC6-EB68-40bd-B6CC-F03B55B7D653"

 VersionGuid="02A8C268-BEE8-463b-A6C0-53ED8256E3D8"

 xmlns="http://www.genicam.org/GenApi/Version_1_1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.genicam.org/GenApi/Version_1_1

 http://www.genicam.org/GenApi/GenApiSchema_Version_1_1.xsd">

 <String Name="TheNode" >

 <Value>Hello World!</Value>

 </String>

</RegisterDescription>

Hello World (2/3)

Add a HelloWorld.xml file

Information about the camera

Version of the camera

The one and only GenICam
node in this file

5

#include <iostream>

#include "GenApi/GenApi.h"

using namespace std;

using namespace GenICam;

using namespace GenApi;

int _tmain(int argc, _TCHAR* argv[])

{

 CNodeMapRef Camera;

 Camera._LoadXMLFromFile("HelloWorld.xml");

 CStringPtr ptrTheNode = Camera._GetNode("TheNode");

 cout << ptrTheNode->ToString() << "\n";

Hello World (3/3)

Add some code to HelloWorld.cpp

GenICam namespaces

Create the node map

Fetch pointer to node and output content

Adds all GenApi headers
and libs (via #pragma)

6

Connecting the Camera (1/4)

� Assume camera with a 4 byte integer register Gain at address 0xffff0000

� XML code to provide access to the Gain

� GenICam does not provide a transport layer.

� The <Port> node is a proxy only.

� The client must implement an IPort interface and connect it to the proxy node

 <IntReg Name="GainReg" >

 <Address>0xffff0000</Address>

 <Length>4</Length>

 <AccessMode>RW</AccessMode>

 <pPort>Device</pPort>

 <Endianess>LittleEndian</Endianess>

 </IntReg>

 <Port Name="Device"/>

7

Connecting the Camera (2/4)

IPort has three methods which must be implemented by the vendor code

class CTransportLayer : public IPort

{

public:

 virtual EAccessMode GetAccessMode() const

 {

 // if the driver is open, return RW (= read/write), otherwise NA (= not available)

 return RW;

 }

 virtual void Read(void *pBuffer, int64_t Address, int64_t Length)

 {

 // Fetch <Length> bytes starting as <Address> from the camera

 // and copy them to <pBuffer>

 }

 virtual void Write(const void *pBuffer, int64_t Address, int64_t Length)

 {

 // Copy <Length> bytes from <pBuffer> to the camera

 // starting as <Address>

 }

}

8

 CTransportLayer TransportLayer;

 // tbd : open the driver and connect to the camera

 CNodeMapRef Camera;

 Camera._LoadXMLFromFile(XMLFileName);

 Camera._Connect(&TransportLayer, "Device");

 CIntegerPtr ptrGain = Camera._GetNode("GainReg");

 ptrGain->SetValue(42);

 cout << "Gain = " << ptrGain->GetValue() << "\n";

Connecting the Camera (3/4)

Connect the transport layer to the <Port> proxy node named Device

Connect driver to

port proxy node

Your driver code

9

Connecting the Camera (4/4)

Vendor must implement the transport layer and embed GenICam

Port::Device

IntReg::GainReg Client Code

Transport

Layer

Vendor Code
GenICam

IPort interface

10

XML Schema

� XML syntax defined by schema GenApiSchema_Version_1_1.xsd

� HTML Schema documentation

� VisualStudio Intellisense support

� Next element list

� Background syntax verification

11

Content

� Basics

� Hello World

� Connecting a Camera

� XML Schema

� Mapping Gain Register Block

� Dealing with Min / Max

� Logging

� Inquiry Flags

� Enumerations

� Commands

� Advanced Topics

� XML Formulas

� Feature Tree

� Callbacks

� Supported Types & Nodes

� Conclusion & Outlook

12

Minimum and Maximum (1/2)

 <Integer Name="Gain">

 <pValue>GainReg</pValue>

 <Min>0</Min>

 <Max>100</Max>

 </Integer>

 <IntReg Name="GainReg" >

 <Address>0xffff0000</Address>

 <Length>4</Length>

 <AccessMode>RW</AccessMode>

 <pPort>Device</pPort>

 <Endianess>LittleEndian</Endianess>

 </IntReg>

 <Port Name="Device"/>

13

Minimum and Maximum (2/2)

 <Integer Name="Gain">

 <pValue>GainValueReg</pValue>

 <pMin>GainMinReg</pMin>

 <pMax>GainMaxReg</pMax>

 </Integer>

14

Logging

� Extended adjustable logging facilities

� Select aspect (value, accessmode, cache, ...)

� Select nodes (all, camera, specific nodes)

� Different outputs (Debug window, file, TCP/IP, ...)

=>INFO : GenApi.Device.Value.Gain : SetValue(42)...

=>INFO : GenApi.Device.Value.GainMinReg : GetValue...

=>INFO : GenApi.Device.Value.GainMinReg : Get...

=>INFO : GenApi.Device.Value.GainMinReg : ...Get(4) = 0x00000000

=>INFO : GenApi.Device.Value.GainMinReg : ...GetValue = 0

=>INFO : GenApi.Device.Value.GainMaxReg : GetValue...

=>INFO : GenApi.Device.Value.GainMaxReg : Get...

=>INFO : GenApi.Device.Value.GainMaxReg : ...Get(4) = 0x64000000

=>INFO : GenApi.Device.Value.GainMaxReg : ...GetValue = 100

=>INFO : GenApi.Device.Value.GainMinReg : GetValue = 0 (from cache)

=>INFO : GenApi.Device.Value.GainValueReg : SetValue(42)...

=>INFO : GenApi.Device.Value.GainValueReg : Set(4, 0x2A000000)...

=>INFO : GenApi.Device.Value.GainValueReg : ...Set

=>INFO : GenApi.Device.Value.GainValueReg : ...SetValue

=>INFO : GenApi.Device.Value.Gain : ...SetValue

15

Inquiry Flags

Always check the AccessMode before accessing a feature

Use <MaskedIntReg> to extract bit fields from integer registers

 <Integer Name="Gain">

 <pIsImplemented>GainPresenceInqReq</pIsImplemented>

 <pValue>GainValueReg</pValue>

 <pMin>GainMinReg</pMin>

 <pMax>GainMaxReg</pMax>

 </Integer>

 <MaskedIntReg Name="GainPresenceInqReq">

 <Address>0xffff000C</Address>

 <Length>4</Length>

 <AccessMode>RW</AccessMode>

 <pPort>Device</pPort>

 <Bit>0</Bit>

 <Endianess>LittleEndian</Endianess>

 </MaskedIntReg>

 if(IsWritable(ptrGain->GetAccessMode()))

 ptrGain->SetValue(42);

 <pPort>Device

 <LSB>1</LSB>

 <MSB>2</MSB>

<pIsLocked> ���� make read only

16

Enumerations

� Enumerations give integers a symbolic

string name

� EnumEntries can have <pIsImplemented>

links �control content of dropdown boxes

� Handling of the symbolics

� Strings

� C++ enums (static use case)

 <Enumeration Name="GainAuto">

 <EnumEntry Name="Off">

 <Value>0</Value>

 </EnumEntry>

 <EnumEntry Name="Once">

 <Value>1</Value>

 </EnumEntry>

 <EnumEntry Name="Continuous">

 <Value>2</Value>

 </EnumEntry>

 <pValue>GainAutoReq</pValue>

 </Enumeration>

 <MaskedIntReg Name="GainAutoReq">

 <Address>0xffff000C</Address>

 CEnumerationPtr ptrGainAuto = Camera._GetNode("GainAuto");

 ptrGainAuto->FromString("Continuous");

 cout << "GainAuto.Value = " << ptrGainAuto->ToString() << "\n";

17

Commands

� For AutoGain=OneShot a

command GainOnePush is

required

� Execution on writing 1 to a

certain bit in a register

� Can handle self clearing flags

(via polling)

 <Group Comment="GainOnePush">

 <Command Name="GainOnePush">

 <pValue>GainOnePushReg</pValue>

 <CommandValue>1</CommandValue>

 </Command>

 <MaskedIntReg Name="GainOnePushReg">

 <Address>0xffff000C</Address>

 <Length>4</Length>

 <AccessMode>RW</AccessMode>

 <pPort>Device</pPort>

 <Bit>3</Bit>

 <Endianess>LittleEndian</Endianess>

 </MaskedIntReg>

 </Group>

 CCommandPtr ptrGainOnePush = Camera._GetNode("GainOnePush");

 ptrGainOnePush->Execute();

18

Content

� Basics

� Hello World

� Connecting a Camera

� XML Schema

� Mapping Gain Register Block

� Dealing with Min / Max

� Logging

� Inquiry Flags

� Enumerations

� Commands

� Advanced Topics

� XML Formulas

� Feature Tree

� Callbacks

� Supported Types & Nodes

� Conclusion & Outlook

19

 <Converter Name="ExposureTime">

 <pVariable Name="BASE">ExposureTimeBaseReg</pVariable>

 <FormulaTo>FROM / BASE</FormulaTo>

 <FormulaFrom>TO * BASE</FormulaFrom>

 <pValue>ExposureTicksReg</pValue>

 <Unit>s</Unit>

 </Converter>

XML Formulas (1/2)

� FormulaTo is computed on
writing ExposureTime

� FormulaFrom is computed
on reading ExposureTime

� Any number of <pVariable>
entries can be used
(read only)

Client

Time := Tick * Base

Tick := Time / Base

ExposureTickExposureBase

ExposureTime

20

XML Formulas (2/2)

Standard operators

() brackets

+ - * / addition, subtraction, multiplication,

division

% remainder

** power

& | ^ ~ bitwise and / or / xor / not

<> = > < <= >= logical relations

not equal / equal / greater / less /

less of equal / greater or equal

&& || logical and / or

<< >> shift left, shift right

Conditional operator

<condition> ? <true expr.> : <false expr.>

General Functions

SGN, NEG,

Functions present only in (float)

Converter

ATAN, COS, SIN, TAN,

ABS, EXP, LN, LG, SQRT,

TRUNC, FLOOR, CEIL, ROUND(x,

precision),

ASIN, ACOS, SGN, NEG, E, PI

21

Feature Tree

� Most nodes are not exposed to

the client

� Only feature nodes which are

referenced to by a category node

are exposed

� The categories form a tree with

the Root node as root

 <Category Name="Root">

 <pFeature>AnalogControls</pFeature>

 <pFeature>AcquisitionControl</pFeature>

 </Category>

 <Category Name="AnalogControls">

 <pFeature>Gain</pFeature>

 <pFeature>GainAuto</pFeature>

 <pFeature>GainOnePush</pFeature>

 </Category>

 <Category Name="AcquisitionControl">

 <pFeature>ExposureTime</pFeature>

 <pFeature>ExposureTicks</pFeature>

 </Category>

Dumping Feature Tree:

 Category 'Root'

 Category 'AnalogControls'

 'Gain'

 'GainAuto'

 'GainOnePush'

 Category 'AcquisitionControl'

 'ExposureTime'

 'ExosureTick'

Mandatory nodes for camera files:

• Category node named „Root“

• Port node named „Device“

22

Callbacks

� When client writes to ExposureTick

� ExposureTime changes

� GUI must realize that ExposureTime

has changes � register callback ExposureTime

Client

ExposureTick

write

callback

void OnChanged(INode *pNode)

{

 cout << "The node '" << pNode->GetName() << "' has been invalidated\n";

 CValuePtr ptrValue = pNode;

 if(ptrValue.IsValid())

 cout << "Value = " << ptrValue->ToString() << "\n";

}

Register(ptrExposureTime->GetNode(), &OnChanged);

*ptrExposureTicks = 4711;

// here the callback fires

23

Supported Types

� Basic type interfaces supported by GenICam

� IInteger

� IFloat

� IString

� IBoolean

� IEnumeration

� ICommand

� ICategory

� INode (= properties common to all nodes)

� Easy handling through SmartPointers

� Full IntelliSense support

24

Node Types Overview

Dealing with base types

� Integer

� Float

� String

� Register

Dealing with registers
� IntReg

� FloatReg

� StringReg

Mapping integers
� Boolean

� Command

� Enumeration/EnumEntry

Formulas

� Converter / IntConverter

� SwissKnife / IntSwissKnife

Administration
� Category

� Port

Helpers
� Group

� StructReg

Others
� Node, ConfROM, DcamLock,

SmartFeatureAdr, Extension

25

Content

� Basics

� Hello World

� Connecting a Camera

� XML Schema

� Mapping Gain Register Block

� Dealing with Min / Max

� Logging

� Inquiry Flags

� Enumerations

� Commands

� Advanced Topics

� XML Formulas

� Feature Tree

� Callbacks

� Supported Types & Nodes

� Conclusion & Outlook

26

Conclusion

���� GenICam is not complicated ☺☺☺☺

� Clients must get familiar with ~7 main interfaces

� Camera vendors must get familiar with ~16 main node types

27

Outlook

� XML embedded documentation (tootips, description, docu URL)

� Code generator (static camera pointer, no XML parser for embedded systems)

� Parsing Chunks (treating chunk layout like a register space)

� Delivering Events (through callbacks, with data)

� Array support (e.g. for look-up tables through address arithmethic)

� Selector support (e.g. for Gain red / green / blue via multiplexer)

� XML injection (on-the-fly merging of XML files)

� Non-Register based cameras (e.g. for CameraLink via protocol driver DLL)

� Etc. etc.

28

Thank you for your attention!

Contact me � friedrich.dierks@baslerweb.com

Get information � www.genicam.org

Standard Features Naming Convention
Version 1.4

Stéphane Maurice, Matrox ltd.

Software development director, Matrox Imaging
Official maintainer of the Standard Features Naming Convention

for the GenICam Standard Group

2

Overview

� Standard Features Naming Convention (SFNC)

� What is the SFNC ?

� Benefits

� Usage Model

� Structure

� The SFNC document

� How to create a GenICam and SFNC compliant XML

3

What is the SFNC ?

� The Standard Features Naming Convention is a specification.

� The SFNC defines:

� Standard names to control a GenICam device

� A simple usage model to control a GenICam device

� The relation between those standard control features

� The SFNC:

� Is independent of device type (Camera, Control box, …)

� Covers many categories of features (Acquisition, I/O, …)

� Is much more than a simple features naming convention

� Is stable, but continuously expanding (Now at version 1.4)

4

Benefits of the SFNC

� Provides a standard way to control a device

� Permits interoperability between software and hardware of
different vendors

� Provides a consistent and portable behavior to GenICam users

� Defines the basic model for Acquisition, Triggers, Exposure,
Timers, I/O, Events, …

� Provides manufacturers a rich feature set to start with

5

Usage model

� Simple and intuitive

� Procedural (step by step)

� Selector based

� Default behavior is easy to implement

� Specifies the behavior of Acquisition, Triggers, Exposure,
Timers, I/O, Events, …

6

Usage model (Example #1)

// Acquisition with an exposure of 400us:

Camera.ExposureMode = Timed; // Set the exposure mode.

Camera.ExposureTime = 400; // Set the exposure time.

Camera.AcquisitionMode = Continuous; // Continuous capture mode.

Camera.AcquisitionStart(); // Start the acquisition and
transmission.

…

Camera.AcquisitionStop(); // Stop the acquisition.

7

Usage model (Example #2)

// Acquisition using a trigger for each frame:

Camera.TriggerSelector = FrameStart; // Select Trigger type

Camera.TriggerActivation = RisingEdge; // Set Trigger criteria

Camera.TriggerSource = Line 1; // Select the external connection

Camera.TriggerMode = On; // Activate the trigger

Camera.AcquisitionMode = Continuous;// Continuous capture mode

Camera.AcquisitionStart(); // Restart the acquisition
….

Camera.AcquisitionStop(); // Stop the acquisition

8

SFNC structure (Features categories)

� 14 Categories for the features:
� DEVICE CONTROL

� IMAGE FORMAT CONTROL

� ACQUISITION CONTROL

� DIGITAL I/O CONTROL

� COUNTER AND TIMER CONTROL

� EVENT CONTROL

� ANALOG CONTROL

� LUT CONTROL

� USER SET CONTROL

� CHUNK DATA CONTROL

� FILE ACCESS CONTROL

� COLOR TRANSFORMATION CONTROL

� ACTION CONTROL

� TRANSPORT LAYER CONTROL

9

SFNC structure (Features)

� 3 types of features (Mandatory, Recommended, Optional)

� 7 mandatory features:

� AcquisitionMode=Continuous, AcquisitionStart, AcquisitionStop, Width,

Height, PixelFormat, PayloadSize

� Permit continuous acquisition on all cameras in a standard way

� Same features that the GigE Vision cameras must implement

� 400 other Recommended or Optional features:

� Recommended features should be used when this functionality exists

� Optional features are less common but deserve a standard name.

� They cover the Categories mentioned above (Acquisition, Triggers,
Exposure, Timers, I/O, Events, …)

10

SFNC compliance

� GenICam Devices’ XML follow the SFNC names and model:

� If a feature described in the SFNC exists in the camera (ex:Trigger), it

must follow the convention

� Implies to use the same feature name, type and behaviour

� Permits GenICam software libraries to look for known names

� Permits GenICam software libraries to assume a defined model

� Provides full GenICam compliance

� If a functionality is not defined in SFNC, it can be added:

� Manufacturer specific features are easy to add to the XML

� Manufacturer specific features will appear in the GenICam browsers
automatically

� They just need to be defined outside of the standard namespace

11

The SFNC document

� The SFNC source is a Microsoft Word document

� Contains a features summary table

� Features are grouped in categories

� One chapter per category

� Each chapter describes the user model of the category

� Numerous typical usage examples are provided at the end

� An Acrobat reader (PDF) version is available

� Generated at every release

� Published on the GenICam Web site:
http://genicam.org/genicam/genicam™_document_download

12

How to create a SFNC compliant XML

� A machine readable version of the SFNC is available

� Regular ASCII .TXT file with all the SFNC features included

� Generated from the SFNC source document with a VB macro

� Can be used to automate features generation (ex: Parsed using Perl)

� A reference GenICam SFNC XML is also available

� Generated from the source document using the ASCII version above

� Incarnation of the ideal camera with all the features already included

� Can be used as a template to easily create a GenICam compliant XML

� The GenICam group is there to help you

� Strong GenICam community

� Plenty of resources on the GenICam member web site and the mailing list

Thank you for your attention

Contact me � Stephane.Maurice@Matrox.com

Get information � www.genicam.org

See the latest Standard Features Naming Convention at:

http://genicam.org/genicam/genicam™_document_download

Generic Transport Layer Interface

Vers ion 1.0

ja .. war aber gut dass du dabei warst
Rupert Stelz, STEMMER IMAGING GmbH

Group Manager Image Acquisition

2

Content

Generic Transport Layer Interface
 Some wording

 The Modules

 Configuration

 Signaling

 The acquisition

 Buffer handling

 Feature Wrap Up

3

GenTL Overview

Generic Transport Layer Interface

Provides a technology agnostic API to enumerate and control
devices (cameras) and acquire (image)data.

 C-API
 No Device Functionality
 Uses GenApi to configure
 Interacts closely with GenApi

4

GenTL Wording

GenTL Producer

A GenTL Producer is the implementation of a GenTL interface in form
of a dynamic link library. It provides enumeration, control and image
acquisition services.

GenTL Consumer

A GenTL Consumer is a library or application which is able to
access / use the interface provided by a GenTL Producer.

5

GenTL Modules internal structure

GenTL Modules

 System Abstraction of the Host
 Interface Abstraction of a single interface board
 Device Abstraction of a single device
 Stream Abstraction of a data source on a device
 Buffer Representing the buffer which receives the data

6

Open the GenTL Producer

GenTL Module Enumeration & Instantiation

 HMODULE hDll = LoadLibrary(TLPath.c_str());
 if (hDll == NULL)
 {
 cerr << "Error loading TL Client: " << TLPath.c_str() << endl;
 return NULL;
 }

 TL_HANDLE hTl = NULL;
 if (Client::TLOpen(&hTl) < 0)
 {
 cerr << "Error loading TL\n";
 return hTl;
 }

if (TLGetNumInterfaces(hTl, &iNumInterfaces) < 1)
 return NULL;

char szBuffer[1024];
size_t iSize = 1024;
// retrieve name of interface with index 0
status = TLGetInterfaceID(hTl, 0, szBuffer, &iSize);
if (status < 0)
{
 cerr << "Error retrieving interface name\n";
}

// Open th interface
status = TLOpenInterface(hTl, szBuffer, &hInterface);
if (status < 0)
{
 cerr << "Error opening interface name\n";
}

Instantiate Module

7

GenTL Module Configuration

Basic Module parameter inquiry through C API.

The C API provides functions in each module to inquire basic
settings. This interface does not allow setting any of these
parameters.

Advanced Module configuration through GenApi access.

The Module configuration (parameter setting) is done through a
GenICam interface. Each module provides a “virtual” register
map and a GenICam XML to describe that register map.

8

GenTL Module Configuration

Using Info Functions

status = TLGetInfo (hTl, TL_INFO_VENDOR, &iType, szBuffer, &iSize);
if (status >= 0)
{
 cout << " VendorName:\t " << szBuffer << "\n";
}

iUrlLength = 2048;
status = GCGetPortURL(hPort, sURL, &iUrlLength);
if (strlen(sURL) > 2047)
return gcstrXml;

// Parse URL

// Read XML
GCReadPort(hPort, iAddr, pXML, &iXMLSize);

pDeviceMap->_LoadXMLFromString(strXML);

CPort *pPortImpl = new CPort(hPort);
GenApi::IPort *pGenApiPort = dynamic_cast<GenApi::IPort *>(pPortImpl);

char szPortName[256];
size_t iSize = 256;
INFO_DATATYPE iType;
status = GCGetPortInfo (hPort, PORT_INFO_ID, &iType, szPortName,
&iSize);

gcstring gcstrPortName = "Device"/*szPortName*/;
bool bResult = pDeviceMap->_Connect(pGenApiPort, gcstrPortName);

Read URL

Retrieve XML

Load GenApi & Connect Port

Using GenApi Module access

9

Each Module provides an Event Signaling Mechanism.

This allows the GenTL Consumer to wait for defined event types from
within the thread context of the calling application. Such an event can
carry arbitrary data.

For Example after a buffer is filled in the acquisition engine a “NewBuffer”
event is signaled to the GenTL Consumer. The GenTL Consumer can
now fetch the data associated with the event to know which buffer has
been filled and process the data.

GenTL Signaling

10

GenTL Acquisition Interface

Generic Acquisition Interface

The GenTL Producer does not need to interpret the buffer.
Therefor ANY data can be acquired.

But

It can interpret the buffer to
do some preprocessing

11

GenTL Signaling

// Register New Buffer Event
void *NewImageEventData[2];
EVENT_HANDLE pEventNewBuffer = NULL;
status = GCRegisterEvent (hDatastream, EVENT_NEW_BUFFER, &pEventNewBuffer);

.....

status = EventGetData(pEventNewBuffer, &NewImageEventData, &iSize, 500);

if (status == GenICam::Client::GC_ERR_TIMEOUT)
{
 cout << "Timeout" << endl;
}
else if (status < 0)
{
 cout << "Error" << endl;

}
else
{
 cout << "NewImage: " << NewImageEventData[1] << endl;

}

Register Event

Wait for event

12

GenTL Acquisition Interface

 Announce Buffer

 Queue Buffer for Acquisition

 StartAcquisition

 Wait for Buffer
 …

 Queue Buffer for Acquisition

 StopAcquisition

 RevokeBuffer

13

Allocating , Announcing and Queuing

GenTL Buffer Handling

BUFFER_HANDLE pB = NULL;
for (int i = 0; i < 2; i++)
{

pImageBuffer[i] = malloc(iImageSize);

status = DSAnnounceBuffer (hDatastream, pImageBuffer[i], iImageSize, (void *)i, &pB);
 if (status < 0) { HandleError("Error in DSAnnounceBuffer: "); return;}

status = DSQueueBuffer (hDatastream, pB);
 if (status < 0) { HandleError("Error in DSQueueBuffer: "); return;}
}

14

Starting the Acquisition

GenTL Start Acquisition

// Start Acquisition
status = DSStartAcquisition(hDatastream, ACQ_START_FLAGS_DEFAULT, INFINITE);
if (status < 0) { HandleError("DSStartAcquisition failed: "); return;}

CCommandPtr ptrStartAcq= pDeviceMap->_GetNode("AcquisitionStart");
(*ptrStartAcq).Execute();

15

GenTL Acquisition Loop

while (bRun)
{
 size_t iSize = sizeof(NewImageEventData);
 status = EventGetData(pEventNewBuffer, &NewImageEventData, &iSize, 500);

 if (status == GenICam::Client::GC_ERR_TIMEOUT)
 {
 // Timeout
 }
 else if (status < 0)
 {

// Error
 }
 else
 {
 // Process Image Data
 status = DSQueueBuffer (hDatastream, NewImageEventData[0]);
 }
}

16

GenTL Acquisition Shutdown

// Stop Acquisition
status = DSStopAcquisition(hDatastream, ACQ_STOP_FLAGS_DEFAULT);
if (status < 0) { HandleError("DSStopAcquisition failed: "); return;}

// Stop Remote Device
CCommandPtr ptrStopAcq= pDeviceMap->_GetNode("AcquisitionStop");
(*ptrStopAcq).Execute();

// Cleanup
status = DSFlushQueue (hDatastream,
ACQ_QUEUE_INPUT_TO_OUTPUT);
if (status < 0) { HandleError("DSFlushQueue failed: "); return;}

status = DSFlushQueue (hDatastream, ACQ_QUEUE_OUTPUT_DISCARD);
if (status < 0) { HandleError("DSFlushQueue failed: "); return;}

17

GenTL Compliance

 GenICam Trac
– Discussions
– Bugs

 Test Framework
– In SVN

 Simple Demo Implementation

 Standard Text
– V 1.1, RC for 1.2 is out

 Plugfest

18

GenTL Features

 Technology Agnostic

 Any number of devices

 Any number of data streams per device

 Data streams of any data type

 Using GenTL Consumer Thread environment

 Allows multithreaded processing

 Flexible Cofiguration Mechanism

Thank you for your attention!
 Contact me  r.stelz@stemmer-imaging.de
Get information  www.genicam.org

http://www.genicam.org/

How to Participate?

Membership, Benefits, Ressources

Christoph Zierl, MVTec Software GmbH

Director Product Management

Version 1.0

2

Overview

� GenICam members

� Official downloads

� Membership

� Benefits

� Ressources

� Product compliancy

� How to become a member?

3

Official GenICam Web Site

� http://www.genicam.org/

� Overview

� Group Members

� Current Status

� GenICam Contributors

� GenICam Downloads

4

GenICam Group Members

� ~80 associated member companies

� Currently, there are 8 contributing
members:

� Basler

� DALSA

� Leutron Vision

� Matrox

� MVTec

� National Instruments

� Pleora

� STEMMER IMAGING

5

Official GenICam Downloads

� Standard documents

� GenICam GenApi Standard

(incl. CLProtocol) and GenApi schema

� GenICam GenTL Standard

� GenICam SFNC

� Reference implementations

� GenApi reference implementation

(including CLProtocol with v2.1)

� GenTL reference header file

� SFNC reference XML file

� Marketing material and presentations

� Meeting minutes

6

GenApi Reference Implementation

� Available for free to anybody

� Runtime and SDK installation including

documentation and test code

� Supported platforms

� Windows i86 & x64 (with installer)

� Linux i86 & x64 (as tar archives)

� Distributable by modified BSD license

� Source code only available for
associated members

7

Membership Benefits

� Membership to GenICam committee is free

� Membership listing at www.genicam.org

� All individual members…

� …get access to GenICam code repository

� …get account to Wiki, ticket system, and
discussion forum

� …can subscribe to GenICam mailing list

� …can attend the technical meetings

� 1-2 technical meetings per year

� Homework between meetings

� Companies contributing homework can vote

8

GenICam Member Ressources

� Mailing list
(including archive)

� Subversion source
code repository

� Ticket system

� Wiki

� Discussion forum

9

� GenICam compliancy

� Produces or consumes a GenApi XML file

� All public features are present in GenApi XML file

� Follows the GenICam SFNC whenever applicable

� Examples: cameras, libraries and SW packages

� GenICam TL compliancy

� Produces a transport layer interface compatible with

GenTL

� Examples: drivers and software packages

� See also official GenICam flyer at

http://www.genicam.org/files/u102/GENiCAM_Flyer.pdf

Product Compliancy

10

Become a GenICam member!

� Membership application form is part of the
GenICam license document

� Download license from
http://www.genicam.org/

� Fill in and sign membership application.

� Send to EMVA secretariat by fax +49(0)69

66032470 or by email info@emva.org

� After verification of the data provided in the

form, the company becomes associated
member of the GenICam group and gets

access to the mailing list and repository

11

Thank you for your attention!

Contact me � Christoph.Zierl@mvtec.com

Get information � www.genicam.org

	1_GenICam_Introduction.pdf
	2_GenApi_Getting_Started.pdf
	3_GenICam_SFNC_Overview.pdf
	4_GenICam_GenTL.pdf
	Generic Transport Layer Interface
	Content
	GenTL Overview
	GenTL Wording
	GenTL Modules internal structure
	GenTL Module Enumeration & Instantiation
	GenTL Module Configuration
	Folie 8
	GenTL Signaling
	GenTL Acquisition Interface
	Folie 11
	Folie 12
	GenTL Buffer Handling
	GenTL Start Acquisition
	GenTL Acquisition Loop
	GenTL Acquisition Shutdown
	GenTL Compliance
	GenTL Features
	Thank you for your attention!

	5_GenICam_How_To_Participate.pdf

